Список веществ по алфовитy а б в г д е ж з и к л м н п р с т у ф х ц ч ш э ю я

Азотная кислота

Азо́тная кислота́ (HNO3), — сильная одноосновная кислота. Твёрдая азотная кислота образует две кристаллические модификации смоноклинной и ромбической решётками.

Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы. Образует с водой азеотропную смесь с концентрацией 68,4 % и tкип120 °C при атмосферном давлении. Известны два твёрдых гидрата: моногидрат (HNO3·H2O) и тригидрат (HNO3·3H2O).

Химические свойства

Высококонцентрированная HNO3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

mathrm{4HNO_3 longrightarrow 4  NO_2 uparrow + 2  H_2O +  O_2 uparrow}

При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).

Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется её концентрацией.

HNO3 как сильная одноосновная кислота взаимодействует:

а) с основными и амфотерными оксидами:

~mathrm{CuO + 2HNO_3 = Cu(NO_3)_2 + H_2O}
~mathrm{ZnO + 2HNO_3 = Zn(NO_3)_2 + H_2O}

б) с основаниями:

~mathrm{KOH + HNO_3 = KNO_3 + H_2O}

в) вытесняет слабые кислоты из их солей:

mathrm{CaCO_3 + 2HNO_3 = Ca(NO_3)_2 + H_2O + CO_2uparrow}

При кипении или под действием света азотная кислота частично разлагается:

mathrm{4HNO_3 = 4NO_2uparrow + O_2uparrow + 2H_2O}

Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO3 взаимодействует:

а) с металлами, стоящими в ряду напряжений правее водорода:

Концентрированная HNO3

mathrm{Cu + 4HNO_3 (60%) = Cu(NO_3)_2 + 2NO_2uparrow + 2H_2O}

Разбавленная HNO3

mathrm{3Cu + 8HNO_3 ( 30%)= 3Cu(NO_3)_2 + 2NOuparrow + 4H_2O}

б) с металлами, стоящими в ряду напряжений левее водорода:

mathrm{Zn + 4HNO_3 (60%)= Zn(NO_3)_2 + 2NO_2uparrow + 2H_2O}
mathrm{3Zn + 8HNO_3 (30%)= 3Zn(NO_3)_2 + 2NOuparrow + 4H_2O}
mathrm{4Zn + 10HNO_3 (20%)= 4Zn(NO_3)_2 + N_2Ouparrow + 5H_2O}
mathrm{5Zn + 12HNO_3 (10%)= 5Zn(NO_3)_2 + N_2uparrow + 6H_2O}
~mathrm{4Zn + 10HNO_3 (3%)= 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O}

Все приведенные выше уравнения отражают только доминирующий ход реакции. Это означает, что в данных условиях продуктов данной реакции больше, чем продуктов других реакций, например, при взаимодействии цинка с азотной кислотой (массовая доля азотной кислоты в растворе 0,3) в продуктах будет содержаться больше всего NO, но также будут содержаться (только в меньших количествах) и NO2, N2O, N2 и NH4NO3.

Единственная общая закономерность при взаимодействии азотной кислоты с металлами: чем более разбавленная кислота и чем активнее металл, тем глубже восстанавливается азот:

увеличение концентрации кислоты mathrm{Leftarrow NO_2, NO, N_2O, N_2,  NH_4NO_3 Rightarrow} увеличение активности металла
Продукты взаимодействия железа с HNO3 разной концентрации

С золотом и платиной азотная кислота, даже концентрированная не взаимодействует. Железо, алюминий, хром холодной концентрированной азотной кислотой пассивируются. С разбавленной азотной кислотой железо взаимодействует, причем в зависимости от концентрации кислоты образуются не только различные продукты восстановления азота, но и различные продукты окисления железа:

mathrm{Fe + 4HNO_3(25%) = Fe(NO_3)_3 + NOuparrow + 2H_2O}
~mathrm{4Fe + 10HNO_3(2%) = 4Fe(NO_3)_2 + NH_4NO_3 + 3H_2O}

Азотная кислота окисляет неметаллы, при этом азот обычно восстанавливается до NO или NO2:

mathrm{S + 6HNO_3(60%) = H_2SO_4 + 6NO_2uparrow + 2H_2O}
mathrm{S + 2HNO_3(40%) = H_2SO_4 + 2NOuparrow}
mathrm{P + 5HNO_3 (60%) = H_3PO_4 + 5NO_2uparrow + H_2O}
mathrm{3P + 5HNO_3 (30%) + 2H_2O = 3H_3PO_4 + 5NOuparrow}

и сложные вещества, например:

~mathrm{3FeS + 14HNO_3(30%) = 3Fe(NO_3)_3 + 6S + 5NO + 7H_2O}

Некоторые органические соединения (например амины и гидразин, скипидар) самовоспламеняются при контакте с концентрированной азотной кислотой.

Азотная кислота

Некоторые металлы (железо, хром, алюминий, кобальт, никель, марганец, бериллий), реагирующие с разбавленной азотной кислотой, пассивируются концентрированной азотной кислотой и устойчивы к её воздействию.

Смесь азотной и серной кислот носит название «меланж». Благодаря наличию амила достигается концентрация в 104 %[источник не указан 150 дней] (то есть при добавлении к 100 частям меланжа 4 частей дистиллята концентрация остаётся на уровне 100 %, вследствие поглощения воды амилом[источник не указан 150 дней]).

Азотная кислота широко используется для получения нитросоединений.

Смесь трех объёмов соляной кислоты и одного объёма азотной называется «царской водкой». Царская водка растворяет большинство металлов, в том числе золото и платину. Её сильные окислительные способности обусловлены образующимся атомарным хлором ихлоридом нитрозила:

mathrm{3HCl +  HNO_3 longrightarrow  NOCl + 2[Cl] uparrow + 2  H_2O}
mathrm{Au + HNO_3 + 4HCl = HAuCl_4+ NOuparrow + 2H_2O}
mathrm{3Pt + 4HNO_3 + 18HCl = 3H_2PtCl_6 + 4NOuparrow + 8H_2O}

 

Нитраты

HNO3 — сильная кислота. Её соли — нитраты — получают действием HNO3 на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде.

Соли азотной кислоты — нитраты — при нагревании необратимо разлагаются, продукты разложения определяются катионом:

а) нитраты металлов, стоящих в ряду напряжений левее магния:

2NaNO3 = 2NaNO2 + O2

б) нитраты металлов, расположенных в ряду напряжений между магнием и медью:

4Al(NO3)3 = 2Al2O3 + 12NO2 + 3O2

в) нитраты металлов, расположенных в ряду напряжений правее ртути:

2AgNO3 = 2Ag + 2NO2 + O2

г) нитрат аммония:

NH4NO3 = N2O + 2H2O

Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии нитраты — сильные окислители, например:

Fe + 3KNO3 + 2KOH = K2FeO4 + 3KNO2 + H2O — при сплавлении твердых веществ.

Цинк и алюминий в щелочном растворе восстанавливают нитраты до NH3:

mathrm{3KNO_3 + 8  Al + 5  KOH + 18  H_2O longrightarrow 3  NH_3 uparrow + 8  K[Al(OH)_4]}

Соли азотной кислоты — нитраты — широко используются как удобрения. При этом практически все нитраты хорошо растворимы в воде, поэтому в виде минералов их в природе чрезвычайно мало; исключение составляют чилийская (натриевая) селитра и индийская селитра (нитрат калия). Большинство нитратов получают искусственно.

С азотной кислотой не реагируют стекло, фторопласт-4.

Исторические сведения

Методика получения разбавленной азотной кислоты путём сухой перегонки селитры с квасцами и медным купоросом была, по видимому, впервые описана трактатах Джабира(Гебера в латинизированных переводах) в VIII веке. Этот метод с теми или иными модификациями, наиболее существенной из которых была замена медного купоросажелезным, применялся в европейской и арабской алхимии вплоть до XVII века.

В XVII веке Глаубер предложил метод получения летучих кислот реакцией их солей с концентрированной серной кислотой, в том числе и азотной кислоты из калийной селитры, что позволило ввести в химическую практику концентрированную азотную кислоту и изучить её свойства. Метод Глаубера применялся до начала XX века, причём единственной существенной модификацией его оказалась замена калийной селитры на более дешёвую натриевую (чилийскую) селитру.

Во времена М. В. Ломоносова, азотную кислоту называли крепкой водкой.

Промышленное производство, применение и действие на организм

Азотная кислота является одним из самых крупнотоннажных продуктов химической промышленности.

Производство азотной кислоты

Современный способ её производства основан на каталитическом окислении синтетического аммиака на платино-родиевых катализаторах (процесс Оствальда) до смесиоксидов азота (нитрозных газов), с дальнейшим поглощением их водой

4NH3 + 5O2 (Pt) → 4NO + 6H2O
2NO + O2 → 2NO2
4NO2 + O2 + 2H2O → 4HNO3.

Концентрация полученной таким методом азотной кислоты колеблется в зависимости от технологического оформления процесса от 45 до 58 %. Впервые азотную кислоту получили алхимики, нагревая смесь селитры и железного купороса:

4KNO3 + 2(FeSO4 · 7H2O) (t°) → Fe2O3 + 2K2SO4 + 2HNO3↑ + NO2↑ + 13H2O

Чистую азотную кислоту получил впервые Иоганн Рудольф Глаубер, действуя на селитру концентрированной серной кислотой:

KNO3 + H2SO4(конц.) (t°) → KHSO4 + HNO3

Дальнейшей дистилляцией может быть получена т. н. «дымящая азотная кислота», практически не содержащая воды.